First of all, the formula for finding Kelvin is Celsius + 273
Therefore, if we subtract 273, we get the temperature in degrees
120 - 273 = - 153
Therefore, the answer is (1), or -153 degrees Celsius
Hope this helped!! :D
<h2>
Hello!</h2>
The answer is:
The temperature will be the same, 37°C.
<h2>
Why?</h2>
Since from the statemet we know the first temperature, pressure and volumen of a gas, and we need to calculate the new temperature after the pressure and the volume changed, we need to use the Combined Gas Law.
The Combined Gas Law establishes a relationship between the temperature, the pressure and the volume of an ideal gas using Boyle's Law, Gay-Lussac's Law and Charles's Law.
The law establishes the following equation:

Where,
is the first pressure.
is the first volume.
is the first temperature.
is the second pressure.
is the second volume.
is the second temperature.
Then, we are given the following information:

So, isolating the new temperature and substituting the given information, we have:

Hence, we have that the temperature will not change because both pressure and volume decreased and increased proportionally, creating the same relationship that we had before the experiment started.
The temperature will be the same, 37°C
Have a nice day!
Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
Answer:
Water has a density of 1 g/m so it could be sometimes true
Explanation: