<span>The density of the solution =1.05 g/ml.
</span><span>The total mass of the resulting solution is = 398.7 g (CaCl2 + water)
</span>
Find moles of CaCl2 and water.
Molar mass of CaCl2 = 110 (approx.)
Moles of CaCl2 = 23.7 / 110 = 0.22
so, moles of Cl- ion = 2 x 0.22 = 0.44 (because each molecule of CaCl2 will give two Cl- ions)
Moles of water = 375 / 18 = 20.83
Now, Mole fraction of CaCl2 = (moles of CaCl2) / (total moles)
total moles = moles of Cl- ions + moles of Ca2+ ions + moles of water
= 0.44 + 0.22 + 20.83
=21.49
So, mole fraction = 0.44 / (21.49) = 0.02
Guess what !!! density is not used. No need
8798076 atoms are in a 0.3500 mol of gold
d = √((x1 - x2)2 + (y1 - y2)2)
( -2 , 5 ) ( 12 , -1 )
↑ ↑ ↑ ↑
x1 y1 x2 y2
d = √((-2 - 12)2 + (5 - (-1))2) = √((-14)2 + 62) = √(196 + 36) = √232 = 2√58 ≈ 15.23
<h3>
Answer:</h3>
0.000538 mol Pb
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.24 × 10²⁰ particles Pb (lead)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
Our final answer is in 3 sig figs, no need to round.
Answer:
Elements
Explanation:
The <u> elements</u> which are represented by a single uppercase letter, or represented by an uppercase letter followed by a lowercase letter. This tells you the types of <u>elements</u> in the compound.
Elements are one of the simplest chemical substances that cannot be decomposed in a chemical reaction or by any chemical means. They are made up of small indivisible particles called atoms, all having the same number of protons.