The group on the periodic table that would have 0 electronegativity due to the fact that their valence shell is full, i.e, have a full octet would be the inert or noble gases. They have a total of 8 electrons in their valence shell and are thus inert and cannot strongly attract electrons toward itself, from neighbouring atom electrons as it does not need to.
Answer:
D
Explanation:
Double Displacement reaction
Both sides are balanced with option D
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
I am only in 6th grade so all I have to say is good luck and I wish you the best on that quiz.