Answer:
3.53*10^{-7} m
Explanation:
Photon that can rupture the bonds are those with the energy of the bond dissociation energy. If we want to know the energy for each molecule we have to take into account that:

Hence, we have

but the energy is also:

where h is the Planck's constant and c is the speed of ligth. By replacing we obtain:

hope this helps!
<span>Wavelength = (speed) / (frequency)
Speed of EM radiation = 3 x 10⁸ m/s
Frequency (3 × 10¹⁹ Hz) ===> wavelength = 0.01 nanometer
Frequency (3 × 10¹⁶ Hz) ===> wavelength = 10 nanometers</span>
This is the region of X-rays.
Answer:
48.96V
Explanation:
Given parameters:
Resistance = 68Ω
Current = 0.72A
Unknown:
Voltage = ?
Solution:
According to ohm's law;
V = IR
V is the voltage
I is the current
R is the resistance
Now insert the parameters and solve;
V = 68 x 0.72 = 48.96V
Answer:
a) Kinetic energies
K₁ = 1.2 J
K₂ = 7.5 J
b) The bullet that has the highest kinetic energy is the one with the highest speed , v = 50 m/s , K₂ = 7.5 J
c) K₂ -K₁ = 6.3 J
Explanation:
The kinetic energy (K) is that due to the movement of a body and is calculated as follows:
K = (1/2) m*v² (J)
Where :
m : the mass of the body ( kg)
v is the speed of the body (m/s)
Data
m₁ = m₂ = 0.006 Kg
v₁ = 20 m/s
v₂ = 50 m/s
a)Calculation of the kinetic energy
K₁ = (1/2) (m₁)*(v₁)²
K₁ = (1/2) (0.006)*(20)²
K₁ = 1.2 J
K₂= (1/2) (m₂)*(v₂)²
K₂ = (1/2) (0.006)*(50)²
K₂ = 7.5 J
b) K₂ ˃ K₁
The bullet that has the highest kinetic energy is the one with the highest speed , v = 50 m/s, K₂ = 7.5 J
c) Difference of their kinetic energies (K₂ -K₁)
K₂ -K₁ = 7.5 J - 1.2 J = 6,3 J