We use v=IR and assuming the resistance doesn’t change we can also say that the voltage and current (I) are directly proportional which means the voltage also decreases by 1/2
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
Thermal energy from the coffee is transferred to the mug.
Answer:
Question #1- Scientists agree to a standard way of reporting measured quantities in which the number of reported digits reflects the precision in the measurement- more digits, more precision; less digits, less precision. You just studied 14 terms!
Question #2- Units are important because without proper measurement and units to express them, we can never express physical laws precisely just from qualitative reasoning. Units are incredibly important to physics. Two of the most important reasons are the following: (1) they help us. to avoid making mistakes in computation, and (2) they serve as a check on computations once they are completed. In the first case, you can avoid adding 3m and 25cm and coming up with the wrong answer.
Explanation: Hope this helps please mark brainliest!
Answer:
Natural selection is a mechanism, or cause, of evolution.
Explanation:
Adaptations are physical or behavioral traits that make an organism better suited to its environment. Heritable variation comes from random mutations.