1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
3 years ago
9

The 150-lb man sits in the center of the boat, which has a uniform width and a weight per linear foot of 3 lb>ft. Determine t

he maximum internal bending moment. Assume that the water exerts a uniform distributed load upward on the bottom of the boat

Engineering
1 answer:
irina1246 [14]3 years ago
8 0

Answer:

M = 281.25 lb*ft

Explanation:

Given

W<em>man</em> = 150 lb

Weight per linear foot of the boat: q = 3 lb/ft

L = 15.00 m

M<em>max</em> = ?

Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):

∑ Fy = 0  (+↑)     ⇒    q'*L - W - q*L = 0

⇒       q' = (W + q*L) / L

⇒       q' = (150 lb + 3 lb/ft*15 ft) / 15 ft

⇒       q' = 13 lb/ft   (+↑)

The free body diagram of the boat is shown in the pic.

Then, we apply the following equation

q(x) = (13 - 3) = 10   (+↑)

V(x) = ∫q(x) dx = ∫10 dx = 10x   (0 ≤ x ≤ 7.5)

M(x) = ∫10x dx = 5x²  (0 ≤ x ≤ 7.5)

The maximum internal bending moment occurs when x = 7.5 ft

then

M(7.5) = 5(7.5)² = 281.25 lb*ft

You might be interested in
Click this link to view O*NET’s Wages and Employment section for Film and Video Editors.
vova2212 [387]

Answer:

much faster than average

Explanation:

did it on edge (2022-2032)

6 0
2 years ago
W10L1-Show It: Pythagorean Theorem<br> Calculate the total material in the picture.<br> 4<br> 3
Fantom [35]

Answer:

35

Explanation: I really dont even know, I just used up all my tries on it and got it wrong on every other thing i chose. So it's 35 i believe cause its the only answer i didnt choose.

7 0
3 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
Two identical billiard balls can move freely on a horizontal table. Ball a has a velocity V0 and hits balls B, which is at rest,
Lyrx [107]

Answer:

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0

Explanation:

v_0 = Initial velocity of ball A

v_A=v_0\cos45^{\circ}

v_B = Initial velocity of ball B = 0

(v_A)_n' = Final velocity of ball A

v_B' = Final velocity of ball B

e = Coefficient of restitution = 0.8

From the conservation of momentum along the normal we have

mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^{\circ}+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

Coefficient of restitution is given by

e=\dfrac{v_B'-(v_A)_n'}{v_A-v_B}\\\Rightarrow 0.8=\dfrac{v_B'-(v_A)_n'}{v_0\cos45^{\circ}}\\\Rightarrow v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

(v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

Adding the above two equations we get

2v_B'=\dfrac{1.8}{\sqrt{2}}v_0\\\Rightarrow v_B'=\dfrac{0.9}{\sqrt{2}}v_0

\boldsymbol{\therefore v_B'=0.6364v_0}

(v_A)_n'=\dfrac{1}{\sqrt{2}}v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0

From the conservation of momentum along the plane of contact we have

(v_A)_t'=(v_A)_t=v_0\sin45^{\circ}\\\Rightarrow (v_A)_t'=\dfrac{v_0}{\sqrt{2}}

v_A'=\sqrt{(v_A)_t'^2+(v_A)_n'^2}\\\Rightarrow v_A'=\sqrt{(\dfrac{v_0}{\sqrt{2}})^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0.

5 0
3 years ago
How did studying pagodas help engineers create earthquake-proof structures in modern society?A. Engineers learned that the desig
Mila [183]

D cuz i took the test

7 0
3 years ago
Other questions:
  • Sed is a multipurpose tool that combines the work of several filters. sed performs noninteractive operations on a data stream. s
    12·1 answer
  • A strain gauge with a 5 mm gauge length gives a displacement reading of 1.25 um. Calculate the stress value given by this displa
    15·1 answer
  • Which of the following describes fibers? a)- Single crystals with extremely large length-to-diameter ratios. b)- Polycrystalline
    10·1 answer
  • How do I calculate the gear ratio​
    6·1 answer
  • Examples of reciprocating motion in daily life
    14·1 answer
  • Which of the following can minimize engine effort and
    11·2 answers
  • In the car industry, clay models are used to visualize and test new car designs.
    5·2 answers
  • Select the correct answer.
    8·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
  • About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!