Explanation:
Anodizing :
Anodizing is the surface protection process from the environment.As we know that due to external environment surfaces get corrodes .By using anodizing process the outer surface of material coated by using different type of coating material.
As the name stand that in the anodizing process there will be anode and oxygen.in this process oxidation of material take place .
Oxides of aluminium and magnesium are stable that is why they anodized by this process.
Answer:
51.4 Ohms
Explanation:
By applying voltage division rule
where v is voltage, subscripts i and f represnt initial and final, R is resistance, m is internal and l is external.Substituting 7V for final voltage, 10V for initial voltage and the external resistance as 120 Ohms then

Answer:
In Btu:
Q=0.001390 Btu.
In Joule:
Q=1.467 J
Part B:
Temperature at midpoint=274.866 C
Explanation:
Thermal Conductivity=k=30 (Btu/hr)/(ft ⋅ °F)= 
Thermal Conductivity is SI units:

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft
Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft
T_1=500 C=932 F
T_2=50 C= 122 F
Part A:
In Joules (J)

Heat Q is:

In Btu:

Heat Q is:

PArt B:
At midpoint Length=L/2=0.1 m

On rearranging:


Answer:
5.328Ibm/hr
Explanation:
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
for this case we can define the following equation for mass flow using the first law of thermodynamics

where
Q=capacity of the radiator =5000btu/hr
m = mass flow
then using thermodynamic tables we found entalpy in state 1 and 2
h1(x=0.97, p=16psia)=1123btu/lbm
h2(x=0, p=16psia)=184.5btu/lbm
solving

Answer:
the rate of heat loss by convection across the air space = 82.53 W
Explanation:
The film temperature

to kelvin = (5 + 273)K = 278 K
From the " thermophysical properties of gases at atmospheric pressure" table; At
= 278 K ; by interpolation; we have the following
→ v 13.93 (10⁻⁶) m²/s
→ k = 0.0245 W/m.K
→ ∝ = 19.6(10⁻⁶)m²/s
→ Pr = 0.713

The Rayleigh number for vertical cavity

= 
= 

For the rectangular cavity enclosure , the Nusselt number empirical correlation:





h = 1.99 W/m².K
Finally; the rate of heat loss by convection across the air space;
q = hA(T₁ - T₂)
q = 1.99(1.4*0.96)(20-(-10))
q = 82.53 W