1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
5

Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 240°C. The water is slowly heated at constan

t pressure to a final state. If the heat transfer for the process is 2960 kJ, determine the temperature at the final state, in °C, and the work, in kJ. Kinetic and potential energy effects are negligible.
Engineering
1 answer:
Digiron [165]3 years ago
7 0

Answer:

The final temperature of water is 381.39  °C.

Explanation:

Given that

Mass of water = 5 kg

Heat transfer at constant pressure Q = 2960 KJ

Initial temperature = 240 °C

We know that heat transfer at constant pressure given as follows

Q=mC_p\Delta T

We know that for water

C_p=4.187\ \frac{KJ}{kg.K}

Lets take final temperature of water is T

So

Q=mC_p\Delta T

2960=5\times 4.187(T-240)

T=381.39  °C

So the final temperature of water is 381.39  °C.

You might be interested in
A function is different from a procedure because a functiondoes not contain a set of instructions.can have only a limited number
777dan777 [17]

Answer: A function returns a value and a procedure just executes commands.

Explanation:

6 0
2 years ago
Read 2 more answers
Air flows through a convergent-divergent duct with an inlet area of 5 cm² and an exit area of 3.8 cm². At the inlet section, the
Luda [366]

Answer:

The mass flow rate is 0.27 kg/s

The exit velocity is 76.1 m/s

The exit pressure is 695 KPa

Explanation:

Assuming the flow to be steady state and the behavior of air as an ideal gas.

The mass flow rate of the air is given as:

Mass Flow Rate = ρ x A1 x V1

where,

ρ = density of air

A1 = inlet area = 3.8 cm² = 3.8 x 10^-4 m²

V1 = inlet velocity = 100 m/s

For density using general gas equation:

PV = nRT

PV = (m/M)RT

PM/RT = ρ

ρ = (680000 N/m²)(0.02897 kg/mol)/(8.314 J/mol.k)(60 + 273)k

ρ = 7.11 kg/m³

Therefore,

Mass Flow Rate = (7.11 kg/m³)(3.8 x 10^-4 m²)(100 m/s)

<u>Mass Flow Rate = 0.27 kg/s = 270 g/s</u>

Now, for steady flow, the mass flow rate remains constant throughout the flow. Hence, flow rate at inlet will be equal to the flow rate at outlet:

Mass Flow Rate = ρ x A2 x V2

where,

ρ = density of air = 7.11 kg/m³ (Assuming in-compressible flow)

A2 = exit area = 5 cm² = 5 x 10^-4 m²

V2 = exit velocity = ?

Therefore:

0.27 kg/s = (7.11 kg/m³)(5 x 10^-4 m²) V2

<u>V2 = 76.1 m/s</u>

Now, for exit pressure, we use Bernoulli's equation between inlet and exit, using subscript 1 for inlet and 2 for exit:

P1 + (1/2) ρ V1² + ρ g h1 = P2 + (1/2) ρ V2² + ρ g h2

Since, both inlet and exit are at same temperature.

Therefore, h1 = h2, and those terms will cancel out.

P1 + (1/2) ρ V1² = P2 + (1/2) ρ V2²

P2 = P1 + (1/2) ρ V1² - (1/2) ρ V2²

P2 = P1 + (1/2) ρ (V1² - V2²)

P2 = 680000 Pa + (0.5)(7.11 kg/m³)[(100m/s)² - (76.1 m/s)²]

P2 = 680000 Pa + 14962.25 Pa

<u>P2 = 694962.25 Pa = 695 KPa</u>

4 0
3 years ago
A body of weight 300N is lying rough
kumpel [21]

Answer:

Horizontal force = 89.2 N

Explanation:

The frictional force = coefficient of friction * magnitude of the force (weight of the body) * cos theta

Substituting the given values, we get -

Frictional Force = 0.3*300 * cos 25 = 89.2 N

Horizontal force = 89.2 N

6 0
3 years ago
Why is it important to collect forensic evidence and witness accounts as soon as possible after an accident?
Orlov [11]

Answer:

If you have enough forensic evidence than you can be able to figure out who committed the accident or the burglary

Explanation:

Please give BRAINLIEST ANSWER <u>└[T‸T]┘</u>

6 0
3 years ago
You notice a new associate from another area is not wearing his required safety glasses. This is the second time you've noticed
Zina [86]

If I notice a new associate from another area not wearing his safety glasses then I would warn him to wear it. In case he doesn't wear then I will report the Manager or HR regarding the same. The best that could be done is to not provide him the benefits of health insurance by the company. The least likely thing that would be done is to ignore the fact that he is not wearing a safety glasses.

8 0
3 years ago
Other questions:
  • A cylinder contains 480 cm3 of loose dry sand which weighs 820 g. Under a static load of 200 kPa the volume is reduced 1%, and t
    15·1 answer
  • A horse on the merry-go-round moves according to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, where t is in s
    5·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • A reciprocating engine of 750mm stroke runs at 240 rpm. If the length of the connecting rod is 1500mm find the piston speed and
    9·1 answer
  • is sampled at a rate of to produce the sampled vector and then quantized. Assume, as usual, the minimum voltage of the dynamic r
    9·1 answer
  • Meaning of <br> Evaporation
    12·2 answers
  • The best saw for cutting miter joints is the
    10·1 answer
  • Problem 2
    11·1 answer
  • The static weight distribution is changed laterally by
    5·1 answer
  • Technician a says that personal protective equipment (ppe) does not include clothing. technician b says that the ppe used should
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!