Answer: The total vehicle delay is
39sec/veh
Explanation: we shall define only the values that are important to this question, so that the solution will be very clear for your understanding.
Effective red time (r) = 25sec
Arrival rate (A) = 900veh/h = 0.25veh/sec
Departure rate (D) = 1800veh/h = 0.5veh/sec
STEP1: FIND THE TRAFFIC INTENSITY (p)
p = A ÷ D
p = 0.25 ÷ 0.5 = 0.5
STEP 2: FIND THE TOTAL VEHICLE DELAY AFTER ONE CYCLE
The total vehicle delay is how long it will take a vehicle to wait on the queue, before passing.
Dt = (A × r^2) ÷ 2(1 - p)
Dt = (0.25 × 25^2) ÷ 2(1 - 0.5)
Dt = 156.25 ÷ 4 = 39.0625
Therefore the total vehicle delay after one cycle is;
Dt = 39
Answer:
and my favorite song is popular loner
Explanation:
my favorite rapper is rod wave
Answer:
The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero
Explanation:
The expression for the maximum shear stress is given:

Where
σx = stress in vertical plane = 20 ksi
σy = stress in horizontal plane = -30 ksi
τM = 32 ksi
Replacing:

Solving for τxy:
τxy = ±19.98 ksi
The principal stress is:

Where
σp1 = 20 ksi
σp2 = -30 ksi
(equation 1)
equation 2
Solving both equations:
σp1 = 27 ksi
σp2 = -37 ksi
The shear stress on the vertical plane is zero
Answer: double click at the top of the page. Or you can also go to home file and click add heading.
Explanation:
Answer:
Racking is the term used for when buildings tilt as their structural components are forced out of plumb. This is most commonly caused by wind forces exerting horizontal pressure, but it can also be caused by seismic stress, thermal expansion or contraction, and so on.
Explanation: