1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
3 years ago
6

As a result, the total energy in a ____ system (in other words, a system with no external forces) will remain constant

Physics
1 answer:
Alika [10]3 years ago
4 0

Answer:

Isolated or Closed system, both are correct

You might be interested in
A 6,600 kg train car moving at +2.0 m/s bumps into and locks together with one of mass 5,400 kg moving at -3.0 m/s.
Katarina [22]
Option B would be right one
according to momentum conservation
6600*2 = 13200kgm/s
5400*3 = 16200kgm/s
16200-13200 = 3000
now 6600-5400 = 1200 kg
thus 3000/1200 = 2.5 v
5 0
3 years ago
Due Ma<br> duart<br> ded<br> out<br> 25 N<br> 35 N<br> 1-03
Anuta_ua [19.1K]

Answer:

what's that all about

hehehwhe

Explanation:

dgbjjjedgkigdssfhkkoyddwrhkoyeqaxghjjhasghffhjiopjtewqetujjgda

8 0
3 years ago
If a material contains three elements but not joined in a fixed proportion it is a
iren [92.7K]
My answer -

<span> a molecule The clues are that it is elements, so that means atoms, and that it is in a fixed proportion like a molecular formula.

Happy to help you have a great day
</span>
4 0
3 years ago
WILL GIVE BRAINLIEST TO CORRECT ANSWER PLEASE HELP ME
koban [17]

Answer:

The total distance is 381.5 [m]

Explanation:

In order to solve this problem we must use the expressions of kinematics. The clue to solve this problem is that the motorcyclist starts from rest, i.e. its initial speed is zero.

v_{f} =v_{o} +(a*t)

where:

Vf = final velocity [m/s]

Vo = initial velocity = 0

a = acceleration = 2 [m/s²]

t = time = 7 [s]

Vf = 0 + (2*7)

Vf = 14 [m/s]

With this velocity, we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} +2*a*x

where

x = distance traveled [m]

14² = 0 + (2*7*x)

x = 196/(14)

x = 14 [m]

Note: The positive sign in the equations is because the car is accelerating, it means its velocity is increasing.

The other important clue to solve this problem in the second part is that the final velocity is now the initial velocity.

We must calculate the final velocity.

v_{f}= v_{i} +(a*t)

Vf = final velocity [m/s]

Vi = initial velocity = 14 [m/s]

a = desacceleration = 4 [m/s²]

t = time = 8 [s]

Vf = 24 + (4*8)

Vf = 56 [m/s]

With this velocity, we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} +2*a*x

where

x = distance traveled [m]

56² = 14² + (2*4*x)

x = 2940/(8)

x = 367.5 [m]

Note: The positive sign in the equations is because the car is accelerating, it means its velocity is increasing.

Therefore the total distance is Xt = 14 + 367.5 = 381.5 [m].

4 0
3 years ago
A small sphere with mass m is attached to a massless rod of length L that is pivoted at the top, forming a simple pendulum. The
USPshnik [31]

Answer:

a) see attached, a = g sin θ

b)

c)   v = √(2gL (1-cos θ))

Explanation:

In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by

          Wₓ = m a

          W sin θ = m a

          a = g sin θ

b) The diagram is the same, the only thing that changes is the angle that is less

                θ' = 9/2  θ

             

c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.

The easiest way to find linear speed is to use conservation of energy

Highest point

            Em₀ = mg h = mg L (1-cos tea)

Lowest point

          Emf = K = ½ m v²

          Em₀ = Emf

          g L (1-cos θ) = v² / 2

              v = √(2gL (1-cos θ))

4 0
3 years ago
Other questions:
  • Your backpack has a mass of 8 kg. You lift it from the ground to a height of
    8·1 answer
  • What does a black asphalt road become hotter than a white cement sidewalk in the same amount of sunlight?
    5·1 answer
  • A(n) _____ wave is a disturbance in matter that transfers
    7·1 answer
  • Why is it that silver heats quicker than aluminum?
    5·1 answer
  • A wave x meters long has a speed of y meters per second. The frequency of the wave is
    7·1 answer
  • Do you think it is possible to control the magnetic properties of a magnet? Can a magnet be turned on and off?
    12·1 answer
  • In Fig. on the right, what is the acceleration at 1.0 s?
    8·2 answers
  • Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation.
    7·1 answer
  • How does convection current helps cooling the system of engines
    7·1 answer
  • Fill in the blanks about Newton’s First Law of Motion:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!