Answer:
is it bad if i keep thinking about p ussy
Explanation:
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg
(a) Fx = 1.464 N
(b) Fy = 1.952 N
(c) F(x, y) = 1.464 i + 1.952 j
Given
Mass = 1kg
Acceleration = 2.44 m/s2
Angle with positive X axis = 53°
As we know
F = ma
By substituting value
F= 1×2.44 N
F= 2.44 N
(a) Component of force in X direction
Fx = F Cosθ
Fx = 2.44 Cos(53°)
Fx = 2.44 × 0.60 = 1.464 N
(b) Component of force in Y direction
Fy = F Sinθ
Fy = 2.44 Sin(53°) = 2.44 × 0.80 = 1.952 N
(c) Net force in vector notation
F(x, y) = 1.464 i + 1.952 j
Thus we got net force.
#SPJ4
For details visit www.brainly.com
In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J
113,000 Joules of heat energy are required.