Answer:
204.8 K
Explanation:
We use the ideal gas equation:
PV = nRT
where R is the gas constant (0.082 L.atm/K.mol).
We have the following data:
n= 4 moles
P = 5.6 atm
V = 12 L
So, we introduce the data in the ideal gas equation to calculate the temperature (T):
T = PV/nR = (5.6 atm x 12 L)/(4 mol x 0.082 L.atm/K.mol) = 204.8 K ≅ -68 °C
Bynari means that the compound is formed by two kind of elements.
You have listed three ions, V 5+, Cl - and O 2-.
Binary ionic compounds are formed by a positive ion and a negative ion, so the possible ionic compound formed by the listed ions are:
1) VCl5, where the number 5 next to Cl is a subscript.
2) V2O5, where the number 2 next to V and the number 5 next to O are subscripts.
Subscripts are used to indicate the number of atoms of each element in the formula.
So, the empirical formula searched are VCl5 and V2O5.
I can give you other examples with more ions.
Ca (2+) and S(2-) => Ca2S2 => CaS
Na(+) and F(-) => NaF
Cs(+) and Br(-) => CsBr
A, The moon pulls on the earth making the tides rise and fall
<h3>
Answer:</h3>
2.04 mol CBr₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Organic</u>
- Writing Organic Compounds
- Writing Covalent Compounds
- Organic Prefixes
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
675 g CBr₄
<u>Step 2: Identify Conversions</u>
Molar Mass of C - 12.01 g/mol
Molar Mass of Br - 79.90 g/mol
Molar Mass of CBr₄ - 12.01 + 4(79.90) = 331.61 g/mol
<u>Step 3: Convert</u>
<u />
<u />
<u />
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2.03552 mol CBr₄ ≈ 2.04 mol CBr₄
Answer:
BaBr2 (aq) + H2SO4 (aq) → BaSO4 (s) + 2 HBr (aq)
Explanation:
This is a precipitation reaction: BaSO4 is the formed precipitate.