Answer: Correct options are as follows.
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
Explanation:
When salt is dissolved in water then it means that it is a physical change as salt has completely dissociated into ions but they are not chemically combined to the water molecules.
As a result, both salt and water will retain their chemical properties.
For example, NaCl when dissolved in water will dissociate as follows.

Only the particles of salt have evenly distributed in water.
And, when a components of a salt chemically combine with another substance then it will form a new compound.
Therefore, we can conclude that salt dissolved in water is a solution, therefore:
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
There's less space, causing the air particles to collide with the walls of the container more frequently. Pressure is that energy caused by molecules striking a surface. Thus, compacting air molecules leads to higher pressure.
Mg is magnesium. NO3 is nitrate. This gives you magnesium nitrate as an answer.
Answer:
The initial temperature is 300 K (The temperature doesn't change)
Explanation:
Step 1: Data given
Initial volume = 21L
Final volume = 14L
Initial pressure = 100 kPa = 0.986923 atm
Final pressure = 150 kPa = 1.48038 atm
The final temperature = 300K
Step 2: Calculate the initial temperature
Calculate the initial temperature
(P1*V1)/T1 = (P2*V2)/T2
⇒with P1 = the initial pressure = 0.986923 atm
⇒with V1 = the initial volume = 21 L
⇒ with T1 = the initial temperature = ?
⇒with P2 = the final pressure = 1.48038 atm
⇒with V2 = the final volume = 14 L
⇒with T2 = the final temperature = 300 K
(0.986923 * 21)/T1 = (1.48038*14)/300
T1 = 300 K
The initial temperature is 300 K (The temperature doesn't change)
Answer:
68.3 kilo Pascal is the pressure in the container.
Explanation:
To calculate the new pressure , we use the equation given by Boyle's law. This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:


68.3 kilo Pascal is the pressure in the container.