Answer:
For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.
A persons or animals nature, especially as it permanently affects their behavior
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
Answer:
<em>The magnitude of the magnetic field will act in a direction towards me.</em>
<em></em>
Explanation:
When a charged particle enters a magnetic field, it is deflected. The direction of travel of the particle is deflected, but the kinetic energy of the particle is not affected. <em>The force experienced by a charged particle as it enters a magnetic field that acts perpendicular to the path of the velocity of the particle, will produce a force that is perpendicular to both the direction of travel of the particle and the direction of the magnetic field.</em> In this case, the proton moves in the y-direction, the magnetic field is in the x-direction, therefore the force experienced by the particle will be towards me.
Answer:
Answer C
Explanation:
The closer two masses are, the greater the gravity force between them.
This is shown in the formula
Fg = GMm/R²
Smaller distance R means greater force Fg