1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
5

What is the force of a 24.52 kg Television dropped on Pluto (acceleration of 0.59 m/s2)

Physics
1 answer:
inna [77]2 years ago
7 0

The force of gravity on the object is 14.47 N

Explanation:

The weight of an object (which is the force of gravity experienced by an object) at a certain location is given by

F=mg

where

m is the mass of the object

g is the acceleration of gravity at the location of the object

IN this problem, we have:

m = 24.52 kg (mass of the object)

g=0.59 m/s^2 (acceleration of gravity on Pluto)

Substituting, we find the force of gravity on the object:

F=(24.52)(0.59)=14.47 N

Learn more about forces and weight:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

You might be interested in
Water is a fluid, all fluids
Andreyy89
What is the question?
4 0
3 years ago
Un pintor de 75.0 kg sube por una escalera de 2.75 m que está inclinada contra una pared vertical. La escalera forma un ángulo d
dezoksy [38]

Answer:

Work done, W = 1786.17J

Explanation:

The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "

Mass of a painter, m = 75 kg

He climbs 2.75-m ladder that is leaning against a vertical wall.

The ladder makes an angle of 30 degrees with the wall.

We need to find the work done by the gravity on the painter.

The angle between the weight of the painter and the displacement is :

θ = 180 - 30

= 150°

The work done by the gravity is given by :

W=Fd\cos\theta\\\\=75\times 10\times 2.75\times \cos30\\\\=1786.17\ J

Hence, the required work done is 1786.17 J.

6 0
2 years ago
8. A sprinter on a school track team is running north at a velocity of 6.0 m/s. After 5.0 s, she
Marysya12 [62]

Answer:

acc. = 4-(-6) /5= 10/5=2 m/s^2

6 0
2 years ago
A 52 kg and a 95 kg skydiver jump from an airplane at an altitude of 4750 m, both falling in the pike position. Assume all value
Scilla [17]

Answer: 52 kg skydiver: 9.09 m/s and 522.55 s

              95 kg skydiver: 12.3 m/s and 386.2 s

Explanation: <u>Drag</u> <u>Force</u> is an opposite force when an object is moving in a fluid.

For skydivers, when falling through the air, the forces acting on it are gravitational and drag forces. At a certain point, drag force equals gravitational force, which is constant on any part of the planet, producing a net force that is zero. Since there is no net force, there is no acceleration and, consequently, velocity is constant. When that happens, the person reached the <u>Terminal</u> <u>Velocity</u>.

Drag Force and Velocity are proportional to the squared speed. So, terminal velocity is given by:

F_{G}=F_{D}

mg=\frac{1}{2}C \rho Av_{T}^{2}

v_{T}=\sqrt{\frac{2mg}{\rho CA} }

where

m is mass in kg

g is acceleration due to gravitational force in m/s²

ρ is density of the fluid in kg/m³

C is drag coefficient

A is area of the object in the fluid in m²

Calculating:

The 52kg skydiver has terminal velocity of:

v_{T}=\sqrt{\frac{2(52)(9.8)}{(1.21)(0.7)(0.14)} }

v_{T}= 9.09

The 95kg skydiver's terminal velocity is

v_{T}=\sqrt{\frac{2(95)(9.8)}{(1.21)(0.7)(0.14)} }

v_{T}= 12.3

The 52 kg and 95kg skydivers' terminal velocity are 9.09m/s and 12.3m/s, respectively.

The time each one will reach the floor will be:

52 kg at 9.09 m/s:

t=\frac{4750}{9.09}

t = 522.5

95 kg at 12.3 m/s:

t=\frac{4750}{12.3}

t = 386.2

The 52 kg and 95kg skydivers' time to reach the floor are 522.5 s and 386.2 s, respectively.

3 0
2 years ago
17.Explain the different ways that an object can become electrically charged.
Debora [2.8K]

17.

There are three different methods for charging objects:

- Friction: in friction, two objects are rubbed against each other. As a result, electrons can be passed from one object to the other, so one object will gain a net negative charge while the other object will gain a net positive charge due to the lack of electrons.

- Conduction: this occurs when two conductive objects are put in contact with each other, and charges (electrons, usually) are transferred from one object to the other one.

- Induction: this occurs when two objects are brought closer to each other, but not in contact. If one of the two objects has a net charge (different from zero) on its surface, then it will induce a movement of charges in the second object: in particular, in the second object, charges of the opposite polarity will be attracted towards the first object, while charges of same polarity will be repelled further away.

18.

Charged objects produce around themselves an electric field. The strenght of the electric field is given by (assuming the charged objects are spherical)

E=k\frac{q}{r^2}

where k is the Coulomb's constant, q is the magnitude of the charge and r the distance from the centre of the charge. As we see, the strength of the field is inversely proportional to the square of the distance.

Also, the direction of the field is determined by the sign of the charge:

- if the charge is positive, the electric field points away from the charge (this means that other positive charges in the field will be repelled away)

- if the charge is negative, the electric field points towards the charge (this means that other positive charges in the field will be attracted towards it)

19.

Electrical force is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r their separation.

Gravitational force is given by:

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r their separation.

Similarities between the two forces:

- Both are inversely proportional to the square of the distance between the two objects, r

- Both are non-contact forces (the two objects can experience the forces even if they are not in contact)

- Both forces have infinite range

Differencies between the two forces:

- The electric force can be either attractive or repulsive, while the gravitational force is attractive only

- The electric force is much stronger than the gravitational force, due to the much larger value of the Coulomb's constant k compared to the gravitational constant G

4 0
3 years ago
Other questions:
  • Acceleration problem <br> Show work plz
    15·1 answer
  • Please help with these physics problems 1. A soccer ball is dropped from the top of a building. It takes 5.8 seconds to fall to
    13·1 answer
  • How do the sun energy flow through the earth system
    9·1 answer
  • -g With what tension must a rope with length 2.50 m and mass 0.120 kg be stretched for transverse waves of frequency 40.0 Hz to
    6·1 answer
  • A magnet is
    5·1 answer
  • What is the sound intensity level in decibels? Use the usual reference level of I0 = 1.0×10−12 W/m2.
    13·1 answer
  • 19 point please please answer right need help
    6·1 answer
  • Parallel incident rays appear to bounce like they have all originated from the same point. What is this point called?
    5·1 answer
  • Which of the following best describes our
    8·2 answers
  • A tennis player tosses a tennis ball straight up and then catches it after 1.64 s at the same height as the point of release.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!