Answer:
option (B) decreases
Explanation:
According to the Wein's displacement law, the minimum wavelength of the radiated emission is inversely proportional to the absolute temperature of the body which emits radiation.

Where, T is the absolute temperature of the body and λm is the minimum wavelength of heat radiated.
Here, as the temperature increases, the wavelength decreases.
Explanation:
We know that the relation between volume and density is as follows.
Volume = 
So, V = 
= 
Now, we will calculate the area as follows.
Area = 
= 
= 
Formula to calculate the resistance is as follows.
R = 
= 
= 
Thus, we can conclude that the resistance of given wire is
.
The thermal energy that is generated due to friction is 344J.
<h3>What is the thermal energy?</h3>
Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.
Thus, the kinetic energy is given as;
KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J
PE = mgh = 15.0-kg * 9.8 m/s^2 * 2.40 m = 352.8 J
The thermal energy is; 352.8 J - 9.1 J = 344J
Learn more about thermal energy due to friction:brainly.com/question/7207509
#SPJ1
Solve for "x"
X=force
18/6=x/9
cross multiply
162=6x
x=27
Hope this helps
Explanation:
Given formula:
ME=
mv²+mgh
To make height the subject of the formula, follow the following procedures;
Subtract
mv² from both side of equation
M.E -
mv² =
mv² -
mv²+mgh
This gives:
M.E -
mv² = mgh
Multiply both sides of the expression by 
( M.E -
mv² ) x
=
x mgh
h = ( M.E -
mv² ) x 
Learn more:
Kinetic energy brainly.com/question/6536722
#learnwithBrainly