Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer.
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



The instrument that measures wind is called anemometer. Anemometer not only measures wind, but also, this measures the direction of the wind. And anemometer is also a common device used in a station weather. It is dervived from the greek work anemos which means wind.
Answer:
16 J
Explanation:
It is given that,
Work done, W = 2 J
A spring is stretched by 2.0 cm from its equilibrium length
We need to find how much more work will be required to stretch it an additional 4.0 cm.
Let k is the spring constant of the spring. When W = 2J, and x = 2 cm, then energy required to stretch the spring is :

The energy required to stretch the spring from 2 cm to additional 4 cm i.e. 2+4= 6 cm.

So, the required work done is 16 J.