Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Based on Newton's second law of motion, the net force applied to an object is equal to the product of the mass of the object and the acceleration it experiences. That is,
F = ma
If we are to assume that the net force is constant and that the mass is increased, the acceleration should therefore decrease in order to make constant the value at the right-hand side of the equation.
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star