Look at your speedometer for say, a couple of seconds. Depends on whether or not you are moving on average at a constant speed (speedo won't change much) or whether you're in a polluting traffic jam/queue in which case the speedo will go up and down like a yo yo. to determine the speed, you'd probably need to plot the speed on the speedo against the times at which the speedo speeds were read from the speedo.
B. to show that there was conflict between what scientists were observing about the universe and what religion taught them
Answer:
The distance between the camera and the rock is 836.6 cm
Explanation:
A right triangle is formed where the hypotenuse (h) is the distance between the rock and the camera. One of the leg (l) is the distance between the camera and the surface. The angle between the hypotenuse and this leg is α = 90° - 13.69° = 76.31°. By definition:
cos α = adjacent/hypotenuse
cos(76.31) = 198.0/h
h = 198.0/cos(76.31)
h = 836.6 cm
Answer:
mph
Explanation:
= Speed of bird in still air
= Speed of wind = 44 mph
Consider the motion of the bird with the wind
= distance traveled with the wind = 9292 mi
= time taken to travel the distance with wind
Time taken to travel the distance with wind is given as

eq-1
Consider the motion of the bird with the wind
= distance traveled against the wind = 6060 mi
= time taken to travel the distance against wind
Time taken to travel the distance against wind is given as

eq-2
As per the question,
Time taken with the wind = Time taken against the wind





mph
Answer:
The scientific method
Make an observation.
Ask a question.
Form a hypothesis, or testable explanation.
Make a prediction based on the hypothesis.
Test the prediction.
Iterate: use the results to make new hypotheses or predictions.
Explanation: