The answer is C. Chemical Energy
Answer:
2.9 E14 Hz
Explanation:
As we know by Einstein's equation that energy incident on the photo sensitive surface will be used by the surface to eject electron out of the surface with some kinetic energy.
This is given by

now the threshold frequency is the minimum frequency of the incident photons due to which electrons are ejected out with minimum kinetic energy or least kinetic energy.
So here when KE = 0 in the graph then corresponding to that position the frequency will be given as threshold frequency
so here from graph when KE = 0

Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>

D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
The magnitude of the force is 0.7255kN
Explanation:
The elevator floor acts on the person with a force that is due to the gravitational acceleration less the downward acceleration of the elevator:
(force of floor F) = (mass of person m) x [ (grav. acceleration g) - (elevator acceleration a) ]
in other words, considering the elevator floor as a reference frame in the Earth's gravitational field, the person's weight decreases due to the downward acceleration, as follows:

We are given the person's weight at rest, 0.9kN, from which the mass can be determined as:

So

Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.