Answer:
0.074 V
Explanation:
Parameters given:
Number of turns, N = 121
Radius of coil, r = 2.85 cm = 0.0285 m
Time interval, dt = 0.179 s
Initial magnetic field strength, Bin = 55.1 mT = 0.0551 T
Final magnetic field strength, Bfin = 97.9 mT = 0.0979 T
Change in magnetic field strength,
dB = Bfin - Bin
= 0.0979 - 0.0551
dB = 0.0428 T
The magnitude of the average induced EMF in the coil is given as:
|Eavg| = |-N * A * dB/dt|
Where A is the area of the coil = pi * r² = 3.142 * 0.0285² = 0.00255 m²
Therefore:
|Eavg| = |-121 * 0.00255 * (0.0428/0.179)|
|Eavg| = |-0.074| V
|Eavg| = 0.074 V
If a football is kicked from the ground with a speed of 16.71 m/s at an angle of 49.21 degrees, then the vertical component of the initial velocity would be 12.65 m/s
<h3>What is Velocity?</h3>
The total displacement covered by any object per unit of time is known as velocity. It depends on the magnitude as well as the direction of the moving object. The unit of velocity is meter/second.
As given in the problem A football is kicked from the ground with a speed of 16.71 m/s at an angle of 49.21 degrees
The horizontal component of the velocity is given by
Vx = Vcosθ
The vertical component of the velocity is given by
Vy = Vsinθ
As we have to find the vertical component of the velocity given that speed of 16.71 m/s at an angle of 49.21 degrees from the ground
Vy = 16.71 × sin49.21°
Vy = 12.65 m/s
Thus, the vertical component of the velocity would be 12.65 m/s
Learn more about Velocity from here
brainly.com/question/18084516
#SPJ1
<span>Vertical lines are 50º apart.
Horizontal lines are 30 minutes apart.</span>
hi <3
the correct option would be A. displacement. displacement is distance in a direction
hope this helps :)
Answer: True
A water pump
belong to a positive displacement pump that provides constant flow of water at
fixed speed, regardless of changes in the counter pressure. The two main types
of positive displacement pump are rotary pumps and reciprocating pumps.
Moreover, water
pump is a reciprocating positive displacement pump that have an expanding
cavity on the suction side and a decreasing cavity on the discharge side. In
water pumps, the liquid flows into the pumps as the cavity on the suction side
expands and then the liquid flows out of the discharge as the cavity collapses
providing water in a pail.