Answer:
2420 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 22.9 N
Angle (θ) = 35°
Distance (d) = 129 m
Workdone (Wd) =?
The work done can be obtained by using the following formula:
Wd = Fd × Cos θ
Wd = 22.9 × 129 × Cos 35
Wd = 22.9 × 129 × 0.8192
Wd ≈ 2420 J
Thus, the workdone is 2420 J.
Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
Since everything in the circuit is in series .. .
-- The total resistance is (3 + 2) = 5 ohms.
-- The voltage across the 3-ohm resistor is 3/5 of the total voltage.
-- The voltage across the 2-ohm resistor is 2/5 of the total voltage.
(2/5) of (9 volts) = 18/5 = 3.6 volts .
Answer:
Elements that are made from only one type of atom
Explanation:
1) C. velocity
Acceleration is defined as the rate of change of velocity per unit time. In formulas:

where
is the change in velocity
is the time interval
Therefore, the correct answer is C. velocity.
2) A. 9.8m/s/s
Earth's gravity is a force, so it produces an acceleration on every object with mass located on the Earth's surface. This acceleration can be calculated, as it is given by the formula

where
is the gravitational constant
is the Earth's mass
is the Earth's radius
By substituting these numbers into the formula, one can find that the acceleration due to Earth's gravity is
.