Have you ever been in a bus, a train, or a car ?
What happens to you when it stops suddenly ?
A body in motion continues in motion unless
an external force acts on it and makes it stop.
Amy's body keeps moving forward when the train stops.
She pitches forward, and if she doesn't reach out and grab
a seat or a seated person, she may lose her footing and fall
on her face.
Choice - 'A' is a very good explanation.
The other choices aren't.
'C' is a good hunch, but it only applies to her feet.
The rest of her keeps going.
'D' is nonsense. There are no mysterious forces of
'repulsion' or 'attraction' on the train.
Answer:
a. d₁/d₂ = 1.09 b. 0.054 mW
Explanation:
a. What is the ratio of the diameter of the first student's eardrum to that of the second student?
We know since the power is the same for both students, intensity I ∝ I/A where A = surface area of ear drum. If we assume it to be circular, A = πd²/4 where r = radius. So, A ∝ d²
So, I ∝ I/d²
I₁/I₂ = d₂²/d₁² where I₁ = intensity at eardrum of first student, d₁ = diameter of first student's eardrum, I₂ = intensity at eardrum of second student, d₂ = diameter of second student's eardrum.
Given that I₂ = 1.18I₁
I₂/I₁ = 1.18
Since I₁/I₂ = d₂²/d₁²
√(I₁/I₂) = d₂/d₁
d₁/d₂ = √(I₂/I₁)
d₁/d₂ = √1.18
d₁/d₂ = 1.09
So, the ratio of the diameter of the first student's eardrum to that of the second student is 1.09
b. If the diameter of the second student's eardrum is 1.01 cm. how much acoustic power, in microwatts, is striking each of his (and the other student's) eardrums?
We know intensity, I = P/A where P = acoustic power and A = area = πd²/4
Now, P = IA
= I₂A₂
= I₂πd₂²/4
= 1.18I₁πd₂²/4
Given that I₁ = 0.58 W/m² and d₂ = 1.01 cm = 1.01 × 10⁻² m
So, P = 1.18I₁πd₂²/4
= 1.18 × 0.58 W/m² × π × (1.01 × 10⁻² m)²/4
= 0.691244π × 10⁻⁴ W/4 =
2.172 × 10⁻⁴ W/4
= 0.543 × 10⁻⁴ W
= 0.0543 × 10⁻³ W
= 0.0543 mW
≅ 0.054 mW
The Milky Way is a spiral and most smaller galaxies are large clouds. We also have a supermassive black hole in our core, most spiral galaxies have one.