According to Boyle’s law, For a fixed amount of an ideal gas kept at a fixed temperature, P (pressure) and V (volume) are inversely proportional.
Therefore,

Given
,
and
.
Thus,

Explanation:
Since, it is given that the magnet drops and falls lengthwise towards the canter of the ring. As a result, change in magnetic flux will occur which tends to induce an electric current in the ring.
Therefore, a magnetic field is also produced by the ring itself which will actually oppose or repel the magnet.
Thus, we can conclude that the falling magnet be repelled by the ring due to the magnetic interaction of the magnet and the ring.
Answer:
Option (c) is correct.
Explanation:
The apparent change in the frequency of light due to the relative motion between the source and the observer is called Doppler's effect.
When the source is moving towards the observer which is at rest, the apparent frequency increases and if the observer is moving away the frequency of sound decreases.
It occurs for both light and sound.
So, to explain the blue shift of light in the universe is due to the Doppler's effect of light.
Answer:
The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction
Explanation:
In order to calculate the magnitude and direction of the magnetic field, you take into account the following equation for the magnetic force on the proton:
(1)
v: speed of the proton = 9.9*10^5 m/s
q: charge of the proton = 1.6*10^-19C
B: magnetic field = ?
FB: magnetic force on the proton = 1.6*10^-13N
When the proton travels in the positive y direction (^j), you have that the proton experiences a force in the positive z direction (+^k). To obtain this direction of the magnetic force on the proton, it is necessary that the magnetic field points in the negative x direction, in fact, you have:
^j X (-^i) = -(-^k)=^k
To obtain the magnitude of the magnetic field you use:

The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction
They all stay the same regardless