Answer:
First product is FCH-OH chemically known as 2-[2-furyl(hydroxyl)methyl]-Second product is FCH i.e (2E)-2-[2-furyl-methylene]-cyclohexanone
Explanation:
Please see the attached image for complete chemical reaction of aldol condensation of cyclohexanone
Aldol Condensation is a form of electrophilic substitution reaction in which the alpha carbon in enols or enolate anions is substituted by an electrophile to form carbon-carbon bond. Cyclohexanone also known as the first ketone consists of two alpha-carbons and four potential substitutions i.e alpha-hydrogens but none of the hydrogen on the ring is substituted. Ketones such as cyclohexanone are much more acidic than their parent hydrocarbon.
First product is FCH-OH chemically known as 2-[2-furyl(hydroxyl)methyl]-cyclohexanone that further undergoes dehydration resulting into FCH i.e (2E)-2-[2-furyl-methylene]-cyclohexanone
Based on the explanations above, the compound formed is shown in the image.
Answer:
The angular acceleration is
Explanation:
Given that,
Angular velocity,
Angular velocity,
Time t = 10.0 sec
We need to calculate the angular acceleration
Using formula of angular acceleration
Now, we change the angular velocity in rad/s.
Hence, The angular acceleration is
Answer:
A, and D are the answers
Explanation:
The pulley. It is located where the bicycle chain and gears are. The chain is wrapped around the pulley which turns and causes the wheel to turn on its axle.
<h3>Answer : </h3><h3 /><h3>A ) The larger gear can be moved by applying a relatively small force on the smaller gear.</h3>
<h3>B )
The force applied on the smaller gear is transmitted without any loss to the larger gear .</h3><h3 /><h3>
C ) the direction of motion can be changed without changing the direction of the applied force .</h3>
D ) the system would continue to move without any further, after and initial force has set in motion.
The De Broglie wavelength of the electron is
And we can use De Broglie's relationship to find its momentum:
Given
, with m being the electron mass and v its velocity, we can find the electron's velocity:
This velocity is quite small compared to the speed of light, so the electron is non-relativistic and we can find its kinetic energy by using the non-relativistic formula: