Answer:
257.32
Explanation:
I jus worked it out on paper. Brainliest please?
Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
a E =
b E =
c E = 0 N/C
d 
e 
f V = 
g 
h 
i 
Explanation:
From the question we are given that
The first charge 
The second charge 
The first radius 
The second radius 

And ![Potential \ Difference = \frac{1}{4\pi \epsilon_0} [\frac{q_1 }{r}+\frac{q_2}{R_2} ]](https://tex.z-dn.net/?f=Potential%20%5C%20Difference%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%20%20%5B%5Cfrac%7Bq_1%20%7D%7Br%7D%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%5D)
The objective is to obtain the the magnitude of electric for different cases
And the potential difference for other cases
Considering a
r = 4.00 m


Considering b

This implies that the electric field would be

This because it the electric filed of the charge which is below it in distance that it would feel

= 
Considering c
r = 0.200 m
=> 
The electric field = 0
This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field
Considering d
r = 4.00 m
=> 
Now the potential difference is

This so because the distance between the charge we are considering is further than the two charges given
Considering e
r = 1.00 m 
![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5Cfrac%7B1.00%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2026.79%20%2A10%5E3%20V)
Considering f

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.700%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2034.67%20%2A10%5E3%20V)
Considering g

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
Considering h

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7BR_1%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
Considering i

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7BR_1%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
Answer: momentum = 6kgm/s
Explanation:
given that the baseball pitcher is at stationary position, his velocity will be equal to zero. If velocity is zero, his linear momentum will therefore equal to zero.
Linear momentum is the product of mass and velocity. Given that the baseball has
Mass M = 0.15 kg
Velocity V = 40 m/s
Momentum = MV
Momentum = 0.15 × 40 = 6 kgm/s