Answer:
R = 98304.75 m = 98.3 km
Explanation:
The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.
Density = Mass/Volume
Now, it is given that the density of Earth has become:
Density = 1 x 10⁹ kg/m³
Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg
Volume = 4/3πR³ (Volume of Sphere)
R = Radius of Earth = ?
Therefore,
1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]
4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)
R³ = (3/4)(5.97 x 10¹⁵ m³)/π
R = ∛[0.95 x 10¹⁵ m³]
<u>R = 98304.75 m = 98.3 km</u>
Well I must say that's a very interesting machine you've got there. It wouldn't be possible to build a system with an actual mechanical advantage of 2 million. But if you did have such a thing, and you wanted to use it to lift a 2000 pound weight, then you would only need to pull with a force of 1.6% of an ounce ! The bad news is that in order to lift the weight one foot, you'd have to pull about 379 miles of rope through the pulley system !
Answer:
926 N
Explanation:
Metric unit conversion:
R = 18 cm = 0.18 m
r = 5 cm = 0.05 m
The pressure exerted by the F = 12000N car on the wider arm would be ratio of the gravity over area

The pressure must be the same on the smaller pressure for it to be able to start lifting the car. We can calculate the force f acting on it:

The answer is A. Minutes per gallon, because the independent quantity is the gallons
Answer:
yes, majority of the weight will be supported by the front wheel and not by you.
Explanation: