Sorry I don’t know the answer but sorry about this person
A. 1,2,3. The solutions are getting lighter meaning the concentration is decreasing. Its most likely that water was added to dilute the solutions.
Answer is: line be long 3,011·10¹³ kilometers.
diametar of virus = 5·10⁻⁶ cm ÷ 100000 = 5·10⁻¹¹ km.
line lenght = 5·10⁻¹¹ km · 6,023·10²³.
line lenght = 3,011·10¹³ km.
Avogadro number = 6,023·10²³.
1 cm = 10⁻² m = 10⁻⁵ km.
A cycle is counted from the first day of 1 period to the first day of the next period. The average menstrual cycle is 28 days<span> long. Cycles can range anywhere from </span>21<span> to </span>35 days<span> in adults and from </span>21<span> to </span>45 days<span> in young teens.</span>
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)