The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Answer:
c) 387g
Explanation:
Water;
Mass = 250g
Specific heat = 4.184
Initial Temp, T1 = 25 + 273 = 298K
Final Temp, T2 = 35 + 273 = 308K
Heat = ?
H = mc(T2 - T1)
H = 250 * 4.184 (308 - 298)
H = 10460 J
Iron;
Initial Temp, T2 = 95 + 273 = 368K (Upon converting to kelvin temperature)
Mass = ?
Final Temp, T1 = 35 + 273 = 308
Heat = 10460 (Heat lost by iron is qual to heat gained by water)
Specific heat = 0.45
H = mc(T2-T1)
M = 10460 / [0.45 (308 - 368)]
M = 10460 / 27
M = 387g
D. 8
You can predict it from it's name "Octet" means Eight. Atom must have that number of electron to have a stable structure!
Hope this helps!
Answer:
Explanation:
Given parameters:
Volume of CO₂ = 24cm³
time taken for the reaction to complete = 8minutes.
Unknown:
rate of reaction
Soution
The reaction rate is a measure of speed of a chemical reaction. It is often calculated using the expression below:
Reaction rate = 
Reaction rate =
= 3cm³/min
In this reaction, 3cm³ of carbon dioxide were produced per minute
Answer:
An ionic bond is formed by the complete transfer of some electrons from one atom to another. The atom losing one or more electrons becomes a cation or a positively charged ion. The atom gaining one or more electrons becomes an anion which is a negatively charged ion.