We use the gas law named Charle's law for the calculation of the second temperature. The law states that,
V₁T₂ = V₂T₁
Substituting the known values,
(0.456 L)(65 + 273.15) = (3.4 L)(T₁)
T₁ = 45.33 K
<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.
Answer:
The answer would be It breaks them up.
Explanation:
Explanation:
Steaming up or fogging happens when steam condenses on the mirror. Steam emerging from hot water can condense on a colder surface. That’s the reason you can see the result on a mirror instantaneously. Obviously, for a bathroom mirror to steam up, the steam that originates at the shower spray (or the bathtub) has to travel through the cooler air to reach the mirror. Since air tends to heat up easily, the mirror can steam up fast.
Answer:
Carbonic anhydrase and they are located in renal tubules.
Explanation: