Answer:
Part A:
First, convert molarity to moles by multiplying by the volume:
0.293 M AgNO3 = (0.293 moles AgNO3)/1 L x 1.19 L = 0.349 moles AgNO3
Answer:
The porpoise would hear its echo first because sound travels faster in water than in air. The bat would hear its echo first because the amplitude of sound waves ...
Explanation:
Sound travels in waves and the height of the wave is the loudness of the sound.
To decrease sound, you need to make the waves not so high, so you can
- decrease the amplitude
- decrease the height of the crest (lower the top of the wave down)
- increase the height of the trough (bring the bottom of the wave up)
It's all about getting the wave to be closer to the center, to not be so high and low, but to be flatter.
(picture taken from sound . eduation website)
There are a few things you can do to make slime less sticky. You can either:
1) add a bit of baking soda (one to three tea spoons depending on how big it is, for the one that you show I would say one should be enough)
2)You can place it in hot water and squish the water out of it before placing it in cold water and then drying it out a bit with a towel. Don't forget to knead it a bit so it stays smooth and not too hard.
The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609