The correct answer is A. All electrons become free and separate from the nuclei. In metallic bonds, the electrons of the metal atoms are delocalized. The electron in the electron sea can freely roam around or are free to flow.
Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>
Answer is: pH of hydroxylamine solution is 9,23.
Kb(NH₂OH) = 1,8·10⁻⁵<span>.
c</span>₀(NH₂OH)<span> = 0,0500 M =
0,05 mol/L.
c(NH</span>₂⁺) = c(OH⁻) = x.
c(NH₂OH<span>) = 0,05 mol/L - x.
Kb = c(NH</span>₂⁺) · c(OH⁻) / c(NH₂OH).
0,0000000066 = x² / (0,05 mol/L - x).
solve quadratic equation: x = c(OH⁻) = 0,000018 mol/L.<span>
pOH = -log(</span>0,000018 mol/L) = 4,74.<span>
pH = 14 - 4,74 = 9,23.</span>
Fluorine in compounds is always assigned an oxidation number of -1
<span>Water is a polar molecule. If a solute dissolved in water is polar molecule, it will dissolve in water. If a solute dissolved in water is non-polar like oil it will not dissolve in water. Polar dissolves in polar.</span>