D. is the right answer because his pressure is very bad out there in the air.
good luck
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as

Here,
=frequency received by detector
=frequency of wave emitted by source
=velocity of detector
=velocity of source
v=velocity of sound wave
Replacing we have that,


Therefore the frequencty that will hear the passengers is 422Hz
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed

Where, v = speed
a = acceleration
t = time
Put the value into the formula


Hence, The gazelles top speed is 27.3 m/s.
Answer:
0.24 ? I hope that was the answer you were looking for.
Explanation: