The magnetic field strength in a coil is directly proportional to the number of turns, or loops, in the coil.
Therefore, when there are four loops instead of one, the magnetic field strength has increased four times, making it harder to push the magnet in.
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder

=
= 574 kg m²
kinetic energy of the fly wheel

KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
Answer:
little/no
Explanation:
Conductors are materials, which conduct electricity and/or heat. That means, that their resistance to such energy is so little, that an electric current is able to pass through.
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.