1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
6

It has been suggested that rotating cylinders several miles in length and several miles in diameter be placed in space and used

as colonies. Inhabitants of the space colonies would live on the inside surface of the cylinder. Inertial effects would resemble gravity's influence and keep them 'plastered to the surface.' Suppose that you are an inhabitant of a space colony which is 1070 miles in length and 4.86 miles in diameter. How many revolutions per hour must the cylinder have in order for the occupants to experience a centripetal acceleration equal to the acceleration of gravity
Physics
1 answer:
stepladder [879]3 years ago
7 0

Answer:

the required revolution per hour is 28.6849

Explanation:

Given the data in the question;

we know that the expression for the linear acceleration in terms of angular velocity is;

a_{c} = rω²

ω² = a_{c} / r

ω = √( a_{c} / r )

where r is the radius of the cylinder

ω is the angular velocity

given that; the centripetal acceleration equal to the acceleration of gravity a a_{c}  = g = 9.8 m/s²

so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m

Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m

so we substitute

ω = √( 9.8 m/s² / 3909.87 m )

ω = √0.002506477 s²  

ω = 0.0500647 ≈ 0.05 rad/s  

we know that; 1 rad/s = 9.5493 revolution per minute

ω = 0.05 × 9.5493 RPM

ω = 0.478082 RPM  

1 rpm = 60 rph  

so  

ω = 0.478082 × 60

ω = 28.6849  revolutions per hour  

Therefore, the required revolution per hour is 28.6849

You might be interested in
An 67-kg jogger is heading due east at a speed of 2.3 m/s. A 70-kg jogger is heading 61 ° north of east at a speed of 1.3 m/s. F
ololo11 [35]

Answer

given,

mass of jogger  = 67 kg

speed in east direction = 2.3 m/s

mass of jogger 2 = 70 Kg

speed  = 1.3 m/s  in  61 ° north of east.

jogger one

P_1 = m_1 v_1 \hat{i}

P_1 = 67 \times 2.3\hat{i}

P_1 = 154.1 \hat{i}

P_2 = m_2 v_2 \hat{i} +m_2 v_2 \hat{j}

P_2 = 70\times v cos \theta \hat{i} +70\times v sin \theta \hat{j}

P_2 = 70\times 1.3 cos 61^0 \hat{i} +70\times 1.3 sin 61^0\hat{j}

P_2 = 44.12\hat{i} +79.59\hat{j}

now

P = P₁ + P₂

P = 198.22 \hat{i} +79.59 \hat{j}

magnitude

P = \sqrt{198.22^2 + 79.59^2}

P =213.60 kg.m/s

\theta = tan^{-1}\dfrac{79.59}{198.22}

\theta = 21.87

the angle is \theta = 21.87 north of east

7 0
3 years ago
Does the sun sun traces shortest path across local sky on june solstice
viktelen [127]
The June solstice in the Northern hemisphere is the summer solstice. The June Solstice in the Southern hemisphere is the winter solstice. The summer solstice is equivalent to the longest day while the winter solstice is equivalent to the shortest day. Therefore on the local sky, when is the June solstice we have have the longest day (longest path of sun in the sky) in the Northern hemisphere and the shortest day (shortest path of sun in the sky) in the Southern hemisphere.
7 0
3 years ago
a flag of mass 2.5 kg is supported by a single rope. A strong horizontal wind exerts a force of 12 N on the flag. Calculate the
tatuchka [14]
The free-body diagram of the forces acting on the flag is in the picture in attachment.

We have: the weight, downward, with magnitude
W=mg = (2.5 kg)(9.81 m/s^2)=24.5 N
the force of the wind F, acting horizontally, with intensity
F=12 N
and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):
T \cos \alpha -F=0
T \sin \alpha -W=
By dividing the second equation by the first one, we get
\tan \alpha =  \frac{W}{F}= \frac{24.5 N}{12 N}=2.04
From which we find
\alpha = 63.8 ^{\circ}
which is the angle of the rope with respect to the horizontal.

By replacing this value into the first equation, we can also find the tension of the rope:
T= \frac{F}{\cos \alpha}= \frac{12 N}{\cos 63.8^{\circ}}=27.2 N




7 0
3 years ago
es la atmósfera que se percibe en un cuento de acuerdo a la manera de pensar y sentir de los personajes no se ve sólo se siente​
masya89 [10]

Answer:

can you please ask in english

8 0
2 years ago
Using the right amount of significant figures, calculate the answer to the following problem, 215.5+101.02555
cestrela7 [59]

Answer:

This is how I figured it out:

  1. 215.5 rounded to one significant figure is 200
  2. 101.02555 rounded to one significant figure is 100.
  3. 200 + 100 = 300.

Hope this helps!

Explanation:

7 0
3 years ago
Other questions:
  • Select the true statements: check all that apply check all that apply oxidizing agents can convert co into co2. a reducing agent
    15·1 answer
  • Climates on Earth get _____ as you move from the equator to the poles.
    7·2 answers
  • A wire 50 cm long with an east-west orientation carries a current of 7.0 A eastward. There is a uniform magnetic field perpendic
    6·2 answers
  • Use the equation d = st, where d = distance, s = speed, and t = time. If you ride
    15·1 answer
  • Physics help! I really need this homework done:
    8·1 answer
  • Lidia plans an experimental investigation to see how the thickness of a lens affects the point where a beam of light is focused.
    8·1 answer
  • What is potential energy
    13·1 answer
  • In the two-stage cooling method, what is the maximum amount of time allowed to cool food from 135 degrees F or more to 70 degree
    15·1 answer
  • Have thick walls<br>Chamaer o the heart<br>which​
    14·1 answer
  • Difference Between Newton's first law and third law of motion​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!