Answer: wavelength !!
hope this helped :)
Answer:
but where is the question ?
Explanation:
<em>hope</em><em> it</em><em> </em><em>works</em><em> out</em>
The members of these groups make up the majority of voters in many districts thus this be considered a problem.
<u>Option: D</u>
<u>Explanation:</u>
Interest groups play a key role in US politics. Such organizations are made up of wealthy and powerful members who often seek to impose some form of leverage in politicians to promote their goals and agendas. Across the years via many campaigns, they have understood how to speak and manipulate elected leaders and apply leverage to get the kind of legislation that is in their favor. Here the majority of voters in several districts are standing due to group members, as we recognize the interest group belongs to a body in which it uses different methods of lobbying to influence others.
The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors: