Answer:
Hi, even though this is really not a question or an answer to a question.
Explanation:
Do you know if any of this stuff involves 6th grade?
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.
There is too much light entering her eyes.
Explanation:
Since liquid isopropanol is a polar liquid and water is also a polar solvent. So, when both of them are added together then according to the like dissolves like principle they get dissolved.
At the molecular level, the polar molecules of isopropanol get attracted towards the polar molecules of water at the surface of water.
As a result, water molecules get surrounded by isopropanol. Thus, water molecules enter the solution and evenly spread into the solution.
Answer:
The enthalpy change in the the reaction is -47.014 kJ/mol.
Explanation:

Volume of water in calorimeter = 22.0 mL
Density of water = 1.00 g/mL
Mass of the water in calorimeter = m

Mass of substance X = 2.50 g
Mass of the solution = M = 2.50 g + 22 g = 24.50 g
Heat released during the reaction be Q
Change in temperature =ΔT = 28.0°C - 14.0°C = 14.0°C
Specific heat of the solution is equal to that of water :
c = 4.18J/(g°C)


Heat released during the reaction is equal to the heat absorbed by the water or solution.
Heat released during the reaction =-1.433 kJ
Moles of substance X= 
The enthalpy change, ΔH, for this reaction per mole of X:
