The mass of water in the tank, given the data from the question is 549594 g
<h3> Description of mole </h3>
The mole of a substance is related to it's mass and molar mass according to the following equation:
Mole = mass / molar mass
<h3>How to determine the mass of water in the tank</h3>
From the question given above, the following data were obtained:
- Mole of water = 30533 moles
- Molar mass of water = 18 g/mol
- Mass of water = ?
The mass of the water can be obtained as follow:
Mass = mole × molar mass
Mass of water = 30533 × 18
Mass of water = 549594 g
Learn more about mole:
brainly.com/question/13314627
#SPJ1
Answer:
friction
Explanation:
the resistance that one surface or object encounters when moving over another.
Number 3 i think is <span>d.heat moves from an object of higher temperature to an object of lower temperature</span>
Answer:

Explanation:
We are asked to find the new volume of a gas after a change in temperature. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula for this law is:

The gas was heated to 150 degrees Celsius and had a volume of 1587.4 liters.

The temperature was 100 degrees Celsius, but the volume is unknown.

We are solving for the volume at 100 degrees Celsius, so we must isolate the variable V₂. It is being divided by 100°C and the inverse of division is multiplication. Multiply both sides of the equation by 100°C.


The units of degrees Celsius cancel.



The original measurement of volume has 5 significant figures, so our answer must have the same. For the number we calculated, that is the tenth place. The 6 in the hundredth place to the right tells us to round to 2 up to a 3.

The volume of the gas at 100 degrees Celsius is approximately <u>1058.3 liters.</u>