The intersection of plane ABC and plane CDH is <u>line DC</u>.
Here it is in order (2nd to 6th):
1/ab, 1/a^3, b/a^5, b^2/a^7, b^3/a^9
Hope this helps!
Answer:
1. 208 in^2
Step-by-step explanation:
1. We can break the shape up into a rectangle in the middle and 2 triangles on either side of said rectangle.
The dimensions of the rectangle are 8 in by 20 in, and we only know one leg of the triangle as well as the hypotenuse.
If we know one leg and the hypotenuse we can use the pythagorean theormed to sovle for the other side and get 6 in.
So we have
(8 * 20) + 2((1/2)(6)(8))
160 + 48
208 in^2
9514 1404 393
Answer:
2√30 ∠-120°
Step-by-step explanation:
The modulus is ...
√((-√30)² +(-3√10)²) = √(30 +90) = √120 = 2√30
The argument is ...
arctan(-3√10/-√30) = arctan(√3) = -120° . . . . a 3rd-quadrant angle
The polar form of the number can be written as ...
(2√30)∠-120°
_____
<em>Additional comments</em>
Any of a number of other formats can be used, including ...
(2√30)cis(-120°)
(2√30; -120°)
(2√30; -2π/3)
2√30·e^(i4π/3)
Of course, the angle -120° (-2π/3 radians) is the same as 240° (4π/3 radians).
__
At least one app I use differentiates between (x, y) and (r; θ) by the use of a semicolon to separate the modulus and argument of polar form coordinates. I find that useful, as a pair of numbers (10.95, 4.19) by itself does not convey the fact that it represents polar coordinates. As you may have guessed, my personal preference is for the notation 10.95∠4.19. (The lack of a ° symbol indicates the angle is in radians.)
I think the answer should be divisible because you can’t really divide 1 without getting the same # your dividing by.