20%=20/100
(20/100)*50= 10 pages
Part A. You have the correct first and second derivative.
---------------------------------------------------------------------
Part B. You'll need to be more specific. What I would do is show how the quantity (-2x+1)^4 is always nonnegative. This is because x^4 = (x^2)^2 is always nonnegative. So (-2x+1)^4 >= 0. The coefficient -10a is either positive or negative depending on the value of 'a'. If a > 0, then -10a is negative. Making h ' (x) negative. So in this case, h(x) is monotonically decreasing always. On the flip side, if a < 0, then h ' (x) is monotonically increasing as h ' (x) is positive.
-------------------------------------------------------------
Part C. What this is saying is basically "if we change 'a' and/or 'b', then the extrema will NOT change". So is that the case? Let's find out
To find the relative extrema, aka local extrema, we plug in h ' (x) = 0
h ' (x) = -10a(-2x+1)^4
0 = -10a(-2x+1)^4
so either
-10a = 0 or (-2x+1)^4 = 0
The first part is all we care about. Solving for 'a' gets us a = 0.
But there's a problem. It's clearly stated that 'a' is nonzero. So in any other case, the value of 'a' doesn't lead to altering the path in terms of finding the extrema. We'll focus on solving (-2x+1)^4 = 0 for x. Also, the parameter b is nowhere to be found in h ' (x) so that's out as well.
Answer:
the greatest common factor 12 and 32 is 4
hope it helps!
Answer:
Step-by-step explanation:
From the given information; Let's assume that R should represent the set of all possible outcomes generated from a bit string of length 10 .
So; as each place is fitted with either 0 or 1

Similarly; the event E signifies the randomly generated bit string of length 10 does not contain a 0
Now;
if a 0 bit and a 1 bit are equally likely
The probability that a randomly generated bit string of length 10 does not contain a 0 if bits are independent and if a 0 bit and a 1 bit are equally likely is;

so ; if bits string should not contain a 0 and all other places should be occupied by 1; Then:
; 

Answer:flowchart proof
Step-by-step explanation: