Answer:
Droping a baseball
Explanation:
becasue you are useing no sort of force to drop a baseball but you are for everything else
Answer:
Energy
Explanation:
PLAESE MARK AS BRAINLIEST RATE 5 STARS AND THANK ME.
HOPE THIS HELPS
By conducting exhaustive, high-intensity online research for about 15 seconds, I found a source that says the speed of sound in copper is 4600 m/s. (You could easily have completed the same research project in about 1/3 of the time it took you to type and post the question here.)
Time it takes = (distance) / (speed)
Time = (25,000 meters) / (4600 m/s)
Time = (25 / 4.6) km-sec/km
<em>Time = 5.43 seconds </em>
Answer:
76.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 330 m / sec
wavelength ( λ ) = 4.3 m
We have to calculate Frequency ( f ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 330 / 4.3 Hz
= > f = 3300 / 43 Hz
= > f = 76.74 Hz
Hence, frequency of sound is 76.74 Hz.
Answer:
14869817.395 m
Explanation:
=22 microarcsecond
λ = Wavelength = 1.3 mm
Converting to radians we get

From Rayleigh Criterion

Diameter of the effective primary objective is 14869817.395 m
It is not possible to build one telescope with a diameter of 14869817.395 m. But, we need this type of telescope. So, astronomers use an array of radio telescopes to achieve a virtual diameter in order to observe objects that are the size of supermassive black hole's event horizon.