Answer:
There are four categories of byproduct material: Radioactive material that results from the fissioning, or splitting apart, of enriched uranium or plutonium in nuclear reactors. Examples include cobalt-60, cesium-137 and iridium-192. Tailings or waste produced by processing uranium or thorium from ore.
Answer:
organelle are located in da cytoplasm of eukaryotic and prokaryotic cells
Hope this helps!
Answer:
Me too
Explanation:
I dont know why but me too
Explanation:
The first wave was found to have a wavelength of 3 x 10⁵ m and the second wave had a wavelength of 3 x 10⁴ m
We need to find which wave have a higher frequency.
The relation between frequency and wavelength is given by :

Let f₁ and f₂ be the frequency of wave 1 and wave 2.

And

Hence, the wave having less wavelength will have higher frequency. The wave having wavelength 3 x 10⁴ m will have higher frequency.
Answer: The correct option is A,
--> a.) Transition metals have partially filled d subshells.
Explanation:
Transition elements are all metals of economic importance. They are found in the d- lock of the periodic table between group 2 and 3. They occupy three rows, with ten elements in each row. The term 'transition metals' refers only to an element which has PARTIALLY filled d orbitals. Typical example of transition metals include iron (Fe).
They have partially filled 3d orbitals which are responsible for the special properties of the metals. These include:
--> Physical properties: the transition metals have high boiling and melting points. They are hard, dense and lustrous. They are also good conductors of heat and electricity.
--> Chemical reactivity: In the s- block and p-block, the chemical properties of the elements in the same period vary, often quite markedly, from left to right. This does not happen with the transition metals because electrons are added progressively to the inner d-orbitals.
--> Variable oxidation states: they have variable oxidation states because 3d electrons are available for bond formation.