Explanation:
the answer and explanation is in the picture
hope this helps
please like and Mark as brainliest
CH3CH2MgBr is more soluble in diethyl ether .
We know that polar solvent dissolve in polar solvent very perfectly . as diethyl ether is a polar solvent so it have dipole -dipole interaction .
Hence the compound with similar interaction can dissolve in diethyl ether .
Here , MgBr2 is an ionic compound . there is ion-ion interactions occurs which is not similar to dipole -dipole interaction in diethyl ether .hence the solubility of MgBr2 in diethyl ether is less .
but in case of CH3CH2MgBr there are both polar and nonpolar end .CH3CH2 is the nonpolar end and MgBr is the polar end .
thus with the nonpolar end solute interact using depression forces and with polar end solute interact using dipole-dipole interaction . so CH3CH2MgBr is more soluble .
Learn more about polar solvent here :
brainly.com/question/3184550
#SPJ4
Answer= Maximum amount of product that could be obtained under ideal conditions from a given amount of reactants.
Explanation:
The theoretical yields is the ideal maximum amount of a product that can be produced during a chemical reaction while the limiting reactant is the reactant that determines the maximum amount of product that can be formed. mitgliedd1 and 61 more users found this answer helpful.
Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation: