Answer:
a. equal to
Explanation:
The <em>osmotic pressure</em> is calculated by the formula:
π = <em>i</em> * M * R * T
Where π is the osmotic pressure, M is the concentration, R is a constant, T is temperature and <em>i</em> is the van't Hoff's factor (the number of ions a compound forms when dissolved in water,<u> for both NaCl and KBr is 2</u>).
Because R is always the same, and <u>Temperature and Concentration are equal between the two solutions</u>, the osmotic pressure of both solutions are also equal.
Boiling-point is the point of a pure liquid matter starts to evaporate and change into gaseous phase. It is where the set of conditions such as the pressure and temperature enough to do so. Boiling-point elevation, on the other hand, is the phenomenon of which the boiling point of a pure liquid matter is elevated because of the dissolved substances. A great example would be the boiling point of a distilled water (pure water) which is lesser than the boiling point of a sea water because of the dissolved salts. A pure water boils at 100°C at atmospheric pressure while a salt water boils at higher temperature than 100°C at the same pressure. Thus, the answer is D.
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:
See explanation
Explanation:
Matter may exist in three phases; solid, liquid and gas. The state in which matter exists depends on the extent of intermolecular forces operating in the substance.
In solid particles, the molecules that compose the solid are close together because the molecules of a solid do not move from place to place but they continue to vibrate about their fixed position.
For liquids, the molecules that compose a liquid are in random motion but are less energetic than molecules of a gas.
In gases, the molecules are not held together at all. The molecules of a gas have the highest degree of freedom. They move from one point another at a high velocity.
Hence, the order of increasing degree of movement of the particles in different states of matter = solids<liquids< gases.
Solids have well arranged particles, the molecules of a liquid are a little more disorderly than liquid particles while gas particles are the most disorderly of all the states of matter.