<h2>
Hello!</h2>
The answer is:
The empirical formula is the option B. 
<h2>
Why?</h2>
The empirical formula of a compound is the simplest formula that can be written. On the opposite, the molecular formula involves a variant of the same compound, but it can be also simplified to an empirical formula.

We are looking for a formula that cannot be simplified by dividing the number of molecules/atoms that conforms the compound.
Let's discard option by option in order to find which formula is an empirical formula (cannot be simplified)
A. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

B. 
It's an empirical formula since it cannot be obtained by the multiplication of a whole number and the simplest formula. It's the simplest formula that we can find of the compound.
C. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

D. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

Hence, the empirical formula is the option B. 
Have a nice day!
Answer:
01) Cu tting hair is a physical change. reason-1
02) Cooking can be either one, but I would choose chemical reason-3
03) Ice cream melting is a physical change reason-2
Explanation:
Answer:
See explanation
Explanation:
We can convert cyclohexanol to cyclohexene in the presence of a strong acid such as sulfuric acid catalyst in a test tube at 60 oC by heating up the mixture to about 80 oC. This is a dehydration reaction so water is removed to yield the alkene. A drying agent is used to remove any trace amount of water left in the system. This overall reaction is endothermic.
Also, the reverse is the case when we want to carry out the hydration of cyclohexene to yield cyclohexanol. The overall reaction is exothermic and involves the addition of more water to the alkene and then cooling down the system to about 40 oC.
Answer:
Ionic bonds transfer electrons and covalent bonds share electrons.
Explanation:
Ionic bonds tend to transfer electrons completely. Take NaCl for example.
Cl has 7 valence electrons.
Na has 1 valence electron.
To stabilize themselves, either with a full 8 shells or full outer shell, Cl wants 1 electron and Na wants to lose 1 electron. So when NaCl forms, Na donates its electron to Cl.
In a covalent bond, the electrons are shared. Water can be used as an example. The electrons in water usually are around the oxygen, but sometimes it is around the hydrogens.
Answer 1:
Equilibrium constant (K) mathematically expressed as the ratio of the concentration of products to concentration of reactant. In case of gaseous system, partial pressure is used, instead to concentration.
In present case, following reaction is involved:
2NO2 ↔ 2NO + O2
Here, K =
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
Given: At equilibrium, <span>PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm
</span>
Hence, K =
![\frac{[0.0022]^2[0.0011]}{[0.247]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.0022%5D%5E2%5B0.0011%5D%7D%7B%5B0.247%5D%5E2%7D%20)
= 8.727 X 10^-8
Thus, equilibrium constant of reaction = 8.727 X 10^-8
.......................................................................................................................
Answer 2:
Given: <span>PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm.
Therefore, Reaction quotient = </span>
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
=
![\frac{[0.021]^2[0.037]}{[0.192]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.021%5D%5E2%5B0.037%5D%7D%7B%5B0.192%5D%5E2%7D%20)
= 4.426 X 10^-4.
Here, Reaction quotient > Equilibrium constant.
Hence, <span>the reaction need to go to
reverse direction to reattain equilibrium </span>