Answer:
The friction force acting on the object is 7.84 N
Explanation:
Given;
mass of object, m = 4 kg
coefficient of kinetic friction, μk = 0.2
The friction force acting on the object is calculated as;
F = μkN
F = μkmg
where;
F is the frictional force
m is the mass of the object
g is the acceleration due to gravity
F = 0.2 x 4 x 9.8
F = 7.84 N
Therefore, the friction force acting on the object is 7.84 N
Answer:
Speed of the car 1 =
Speed of the car 2 =
Explanation:
Given:
Mass of the car 1 , M₁ = Twice the mass of car 2(M₂)
mathematically,
M₁ = 2M₂
Kinetic Energy of the car 1 = Half the kinetic energy of the car 2
KE₁ = 0.5 KE₂
Now, the kinetic energy for a body is given as

where,
m = mass of the body
v = velocity of the body
thus,

or

or

or

or

or
.................(1)
also,

or

or

or

or

or

or

or

or

and, from equation (1)

Hence,
Speed of car 1 =
Speed of car 2 =
The acceleration due to gravity (g) on this planet is 39.44 m/s²
<h3>What is solar system?</h3>
Solar system consists of all the planets and the most importantly the center of the solar system is Sun.
Given is an unknown planet in the outer-reaches of the solar system, a pendulum with a 12 g bob and a string length of 4 m oscillates with a period of 2 seconds.
The time period of the pendulum is
T = 2π √l/g
Squaring both sides, we get
l/g = T² / 4π²
g = 4π²l/ T²
Substitute Time period T = 2s and length l = 4m, we get
g = 4π²x 4/ 2²
g =39.44 m/s²
Thus, the acceleration due to gravity on this planet is 39.44 m/s²
Learn more about solar system.
brainly.com/question/12075871
#SPJ1