Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
Answer:
what is your question because I seem to not see a question in this question....
As the scattering angle of the photon increases, the wavelength associated with the photon increases.
<h3><u>
Explanation:</u></h3>
The particle with quantum mechanical property is known as Compton wavelength. The wavelength of a photon increases during collision. When the scattering angle of the photon is 0 degree then the photon's wavelength increases by 0 and when the scattering angle is 180 degree then the wavelength of the photon will become double. This is known as Compton wavelength.
When a photon undergoes collision process, the photo loses its energy and this energy is transferred to the electrons. This causes energy of the photon to decrease and thus the frequency also decreases. Thus, the wavelength of the photon will increase.
By Newton's second law, we have

So, in order to give a 0.15kg body an acceleration of 40m/s^2, you need a force of

Answer:
In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.