1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
14

A bullet with a mass of 0.040 kg collides inelastically with a wooden block of mass 1.5 kg, initially at rest. After the collisi

on, the bullet along with the block has a speed of 1.0 m/s. Calculate the initial speed of the bullet.
Physics
1 answer:
miss Akunina [59]3 years ago
3 0

Answer:12.43 m/s

Explanation:

You might be interested in
There are four charges, each with a magnitude of 4.25 C. Two are positive and two are negative. The charges are fixed to the cor
VMariaS [17]

Answer:

 F = 7.68 10¹¹ N,  θ = 45º

Explanation:

In this exercise we ask for the net electric force. Let's start by writing the configuration of the charges, the charges of the same sign must be on the diagonal of the cube so that the net force is directed towards the interior of the cube, see in the attached numbering and sign of the charges

The net force is

          F_ {net} = F₂₁ + F₂₃ + F₂₄

bold letters indicate vectors. The easiest method to solve this exercise is by using the components of each force.

let's use trigonometry

          cos 45 = F₂₄ₓ / F₂₄

          sin 45 = F_{24y) / F₂₄

          F₂₄ₓ = F₂₄ cos 45

          F_{24y} = F₂₄ sin 45

let's do the sum on each axis

X axis

          Fₓ = -F₂₁ + F₂₄ₓ

          Fₓ = -F₂₁₁ + F₂₄ cos 45

Y axis  

         F_y = - F₂₃ + F_{24y}

         F_y = -F₂₃ + F₂₄ sin 45

They indicate that the magnitude of all charges is the same, therefore

         F₂₁ = F₂₃

Let's use Coulomb's law

         F₂₁ = k q₁ q₂ / r₁₂²

       

the distance between the two charges is

         r = a

         F₂₁ = k q² / a²

we calculate F₂₄

           F₂₄ = k q₂ q₄ / r₂₄²

the distance is

           r² = a² + a²

           r² = 2 a²

         

we substitute

           F₂₄ = k  q² / 2 a²

we substitute in the components of the forces

          Fx = - k \frac{q^2}{a^2} +  k \frac{q^2}{2 a^2}  \ cos 45

          Fx = k \frac{q^2}{a^2}  ( -1 + ½ cos 45)

          F_y = k \frac{q^2}{a^2} ( -1 +  ½ sin 45)    

         

We calculate

            F₀ = 9 10⁹ 4.25² / 0.440²

            F₀ = 8.40 10¹¹ N

       

            Fₓ = 8.40 10¹¹ (½ 0.707 - 1)

            Fₓ = -5.43 10¹¹ N

         

remember cos 45 = sin 45

             F_y = - 5.43 10¹¹  N

We can give the resultant force in two ways

a) F = Fₓ î + F_y ^j

          F = -5.43 10¹¹ (i + j)   N

b) In the form of module and angle.

For the module we use the Pythagorean theorem

          F = \sqrt{F_x^2 + F_y^2}

          F = 5.43 10¹¹  √2

          F = 7.68 10¹¹ N

in angle is

           θ = 45º

7 0
3 years ago
A new ride being built at an amusement park includes a vertical drop of 71.6 meters. Starting from rest, the ride vertically dro
Allisa [31]

Answer: 2.6x107

Explanation:

3 0
3 years ago
Parasaurolophus was a dinosaur whose distinguishing feature was a hollow crest on the head. The 1.5-m-long hollow tube in the cr
Oksi-84 [34.3K]

Answer:

f1 = 58.3Hz, f2 = 175Hz, f3 = 291.6Hz

Explanation:

lets assume speed of sound is 350 m/s.

frequencies of a standing wave modes of an open-close tube of length L

fm = m(v/4L)

where m is 1,3,5,7......

and fm = mf1

where f1 = fundamental frequency

so therefore: f1 = 350 x 4 / 1.5

f1 = 58.3Hz

f2 = 3 x 58.3

f2 = 175Hz

f3 = 5 x 58.3

f3 = 291.6Hz

5 0
4 years ago
An object at rest does not _____ and an object in motion does not _____, unless an _____ force acts upon it
mel-nik [20]

Answer:

An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it

Explanation:

This statement is also known as Newton's first law, or law of  inertia.

It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore

- If an object is at rest, it will remain at rest if there is no force acting on it

- If an object is moving, it will continue moving at constant velocity if there is no force acting on it

This phenomenon can be also understood by looking at Newton's second law:

F = ma

where

F is the net force on an object

m is the mass

a is the acceleration

If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).

5 0
3 years ago
True or False:
mart [117]
This is a true statement
3 0
3 years ago
Read 2 more answers
Other questions:
  • A spring is compressed by 0.02m. Calculate the energy stored in the spring if the force constant is 400Nm-1
    15·1 answer
  • Match the example to the type of equipment category it fits best in.
    14·1 answer
  • A cannonball is tired with an initial speed of 40m/s and a launch angle of 30degrees from a cliff that is 25m tall. a. What is t
    12·1 answer
  • Measuring the Orbital Speeds of Planets
    6·1 answer
  • Which of the following would have the highest power rating? 100 joules of energy used in 0.5 seconds 500 joules of energy used i
    9·2 answers
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    15·2 answers
  • Which projectiles will be visibly affected by air resistance when they fall?
    14·1 answer
  • 1. The asthenosphere and lithosphere are parts of Earth's
    11·1 answer
  • Someone who is a girl friend me because I’m trying to get simp record
    13·2 answers
  • No links please, links never work, this is science not physics
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!