Let p be
the population proportion. <span>
We have p=0.60, n=200 and we are asked to find
P(^p<0.58). </span>
The thumb of the rule is since n*p = 200*0.60
and n*(1-p)= 200*(1-0.60) = 80 are both at least greater than 5, then n is
considered to be large and hence the sampling distribution of sample
proportion-^p will follow the z standard normal distribution. Hence this
sampling distribution will have the mean of all sample proportions- U^p = p =
0.60 and the standard deviation of all sample proportions- δ^p = √[p*(1-p)/n] =
√[0.60*(1-0.60)/200] = √0.0012.
So, the probability that the sample proportion
is less than 0.58
= P(^p<0.58)
= P{[(^p-U^p)/√[p*(1-p)/n]<[(0.58-0.60)/√0...
= P(z<-0.58)
= P(z<0) - P(-0.58<z<0)
= 0.5 - 0.2190
= 0.281
<span>So, there is 0.281 or 28.1% probability that the
sample proportion is less than 0.58. </span>
7. honestly not 100% sure. i did 364 divided by 13 which was 28 so 28 flowers per table. and then 28 divided by 4. 7 flowers per vase.
-13m = -377
m= -377/-13
m=29
the negatives cancel out. so just do 377/13 which equals 29
Answer:
f (-4) = 3x(-4)^2 - 7x(-4) - 32 = 44
Step-by-step explanation:
you should replace every x with the number given which is here equals -4
Pr(1/2) for both I believe. If not right sorry.