To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹
A chemical equation is a short hand expression of a chemical reaction. There aretwo<span> parts to a chemical equation. The reactants are the elements or compounds on the left side of the arrow (-->). The elements and compounds to the right of the arrow are the products.</span>
Answer:
624510100
Explanation:
Doing a conversion factor:
![0,0006245101[km]*\frac{1000[m]}{1 km} *\frac{1x10^{9} nanometer}{1 m} =624510100 [nanometer]](https://tex.z-dn.net/?f=0%2C0006245101%5Bkm%5D%2A%5Cfrac%7B1000%5Bm%5D%7D%7B1%20km%7D%20%2A%5Cfrac%7B1x10%5E%7B9%7D%20nanometer%7D%7B1%20m%7D%20%3D624510100%20%5Bnanometer%5D)
Answer:
its A
Explanation:
because frostbite kills the nerves