<span>All scientists try to base their conclusions on the experiments they have conducted and they have repeated them to be sure of it. </span>
Answer:
Your answer would be C.
Explanation:
Gamma radiation, unlike alpha or beta, does not consist of any particles, instead consisting of a photon of energy being emitted from an unstable nucleus. Having no mass or charge, gamma radiation can travel much farther through air than alpha or beta, losing (on average) half its energy for every 500 feet.
Its chemical formula H2O, indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. "Water" is the name of the liquid state of H2O at standard conditions for temperature and pressure.
Answer:
0.04838J
Explanation:
Heat is a form of energy that is transferred from one body to another as the result of a difference in temperature between the bodies , here heat is added to the water as a result of temperature change of 0.364 degreesC
Given:change in temperature=0.364
Mass of water=0.0318g
But we need specific heat capacity of water which is
4.2 J/g°C
Then we can calculate How much heat is added by using below formula
Energy = Mass * specific heat capacity *(change in temperature)
energy =0.0318g* 4.18g*0.364
=0.04838J
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L